Adhesion between Hydrophobic Elastomer and Hydrogel through Hydrophilic Modification and Interfacial Segregation

Kevin Tian, Jinho Bae, Zhigang Suo, and Joost J. Vlassak

ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.8b16445 • Publication Date (Web): 21 Nov 2018

Downloaded from http://pubs.acs.org on November 27, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Figure 1. A) Illustration of the change in surface chemistry of a PDMS sample upon exposure to an oxidizing surface treatment. B)-D) Illustration of the possible fates for a surface oxidized PDMS sample, where the surface silanol groups are either B) dominated by hydrophobic recovery while exposed to atmosphere or C) hydrogen bonded with a polar solvent and suppresses hydrophobic recovery. D) This work proposes an alternative method of preserving the hydrophilic surface of PDMS through direct contact with a hydrogel, which also enables the preservation of the interfacial adhesion between hydrogel and PDMS.

508x338mm (300 x 300 DPI)
Figure 2. A) Illustration and B) Photograph of the experimental setup for adhesion measurements using a 90° peeling setup. C) A schematic overview of the segmented mold developed to preserve sample interface integrity. D) The sequence of sample fabrication, assuming a fully assembled mold stack.
Figure 3. A) Contact angle measurements over a period of 400 hours of untreated PDMS and plasma-treated PDMS aged in contact with hydrogel (green diamond) or exposed to atmosphere (red square), with all lines to act as a guide to the eye; samples were all stored under RH control of 47%. Images illustrating B) hydrophobic (at 109.9°), C) weakly hydrophilic (at 54.8°) and D) hydrophilic (at 30.3°) regions of the behavior are shown.
Figure 4. A) An example of the hydrogel-elastomer bilayer interfacial peeling data used to calculate the plateau peeling force, presented as a plot of peeling force divided by sample width against peeling extension. B) A plot of the interfacial toughness of the plasma-treated PDMS and PAAm hydrogel interface observed over a 408 hour time period, with black line as a guide to the eye. Highlighted in blue, red, and green are data points at 18, 73 and 406 hours represented by the peeling data illustrated in A).
Figure 5. A) A representative image of a peeling test after 336 hours of aging for a hydrogel containing no rheological modifier cured in contact with oxygen plasma-treated PDMS. B) & C) These representative images illustrate peeling tests of PDMS off hydrogels containing rheological modifier at aging time of 73 hours and 18 hours respectively. D) Plot of the adhesion recovery at different waiting times, 5 min and 24 hrs, of the plasma-treated PDMS-hydrogel interface for hydrogels both with and without the rheological modifier.

180x112mm (300 x 300 DPI)
Figure 6. Bilayer shear testing performed on an aged hydrogel-PDMS interface. Photos have been decolorized for clarity. A) shows the sample and a representative schematic of the un-stretched sample (schematic not to scale). Acrylic, hydrogel, and PDMS had thicknesses of 1.6mm, 0.5mm, and 1.6mm respectively, all with a width of 25mm. B) As the sample is stretched at a rate of 10mm/min, the PDMS portion is deformed while the thinner hydrogel layer, bonded to a stiff acrylic plate, is constrained. With increased strain the PDMS eventually fails and displays a slide/relaxation phenomenon that is readily explained by the presence of a viscous layer at the hydrogel-PDMS interface. C) An equivalent schematic representation of the previously described sample as it is stretched.

237x187mm (300 x 300 DPI)
Figure 7. Fluorescence confocal imaging of the PDMS-hydrogel interface, having containing tagged the uncrosslinked PAAm chains with fluorescein-o-acrylate and aged for A) 18 hours or B) 384 hours. 3D reconstruction utilized scans centered on the interface ±100μm and included both bright field and fluorescence channels for the perspective view; top and side views of the reconstruction used only the fluorescence channel.
Adhesion between Hydrophobic Elastomer and Hydrogel through Hydrophilic Modification and Interfacial Segregation

Kevin Tian†‡, Jinhye Bae†‡, Zhigang Suo‡#*, Joost J. Vlassak†*"

† Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

‡ Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA

KEYWORDS: PDMS, hydrogel, hydrophobic recovery, extrusion printable hydrogel, ionic conductor, adhesion, self-healing interface

ABSTRACT: Recent progress in the printing of soft materials has made it possible to fabricate soft stretchable devices for a range of engineering applications. These devices tend to be heterogeneous systems and their reliability depends to a large extent on the integrity of the interfaces between the various materials in the system. Previous studies
on the printing of hydrogels have highlighted the need to investigate the adhesion between extrusion printable dielectric elastomers and hydrogels. Here we consider polydimethylsiloxane (PDMS) and a polyacrylamide hydrogel that contains lithium chloride and a non-ionic rheological modifier. We show that the adhesion between oxygen plasma-treated PDMS and the hydrogel increases with time to reach a stable value of 15 J m\(^{-2}\) after approximately six days. During that time, the contact angle of water on the PDMS interface remains constant at approximately 30°, suggesting that hydrophobic recovery of plasma-treated PDMS is suppressed by the presence of the hydrogel. It is further observed that a thin viscous layer develops at the interface between PDMS and hydrogel, which results in energy dissipation upon debonding and which allows full recovery of the adhesion after debonding and rejoining. This viscous layer develops only in the presence of the rheological modifier in the hydrogel and the hydrophilic surface treatment of the PDMS.

Introduction

Soft materials have recently risen in popularity for a wide variety of engineering applications, particularly in the areas of soft-robotics\(^1,2\), stretchable electronics\(^3,4\), and biomedical devices\(^5-7\). Most designs require the integration of dissimilar soft materials into a single device. For instance, ionic devices have seen several suites of functionalities developed from combinations of hydrogels and elastomers\(^8-12\). These devices illustrate materials dissimilarity as a functional necessity: a hydrogel serves as an electrical conductor and a hydrophobic elastomer serves as a dielectric. As these
devices become more sophisticated, more care must be given to their manufacture.

Although great progress has been made in the extrusion-based fabrication of stretchable electronic3,4 and ionic13–15 devices, less attention has been devoted to a more subtle but equally important problem: how reliable are these manufacturing techniques for dissimilar materials? In this context, the interfacial adhesion is critical to the reliability of a broad range of materials, including composites16,17, dental adhesives18, and biological organisms19,20. Recent forays into soft-materials extrusion printing have acknowledged adhesion as important, but have rarely quantified the adhesion between dissimilar materials within printed systems13,15. As devices become more sophisticated and complex, crack driving forces may easily scale such that delamination becomes a serious problem. Neither predictive capability nor process optimization is possible without quantification of adhesion. Therefore, as manufacturing processes are adapted for soft materials, studies that quantify the adhesion between dissimilar materials must be conducted.
One area of manufacturing that has seen particularly rapid development is 3D extrusion printing, as research has expanded the materials roster from thermoplastics to include metals21, ceramics22, and soft materials such as hydrogels and elastomers6,7,13,15,23–25.

In our previous work, we identified hygroscopic-salt-containing polyacrylamide (PAAm) hydrogel and polydimethylsiloxane (PDMS) as suitable materials that can be integrated in an extrusion printing process for ionic devices15. The hygroscopic salt served to maintain water content while enhancing electrical conductivity26. The fabrication process developed utilized rheological tuning combined with surface energy matching of PDMS via plasma oxidation to allow for consistent submillimeter extrusion printing of a hydrogel precursor onto PDMS. Controlling the rheological behavior of the precursor is essential to achieving 3D extrusion printable hydrogels27; an established method for this is by adding a rheological modifier to the hydrogel precursor such as uncrosslinked PAAm7,13,15, alginate24, or synthetic-clay23. As part of the fabrication procedure, the PAAm hydrogel precursor contained a PAAm-based rheological modifier to tune its extrusion behavior. Incidentally, the use of uncrosslinked PAAm chains as a rheological modifier enables the printed hydrogels to be optically transparent, which is significant to
some devices11,12. To ensure good wetting of the PDMS by the hydrogel precursor, the PDMS surface was treated with oxygen plasma. However, since PDMS plasma-based surface treatments are known to be transient28–32, the long-term stability of the adhesion between a hydrogel and PDMS remains in question. As these materials are common within stretchable electronics/ionics, the adhesive interactions at the interface of hydrogel and hydrophobic elastomer are of broad interest.

The general strategy of plasma oxidation treatments for improving adhesion and wetting is well established for a wide variety of materials, including polycarbonate33, oxides4, glass34, and silicon wafers35. When PDMS is exposed to an oxygen plasma, surface
methyl groups are converted into silanol groups31,34 (Figure 1A). The silanol groups are capable of hydrogen bonding with water, and thus render the surface of the plasma-oxidized PDMS hydrophilic.

Figure 1. A) Illustration of the change in surface chemistry of a PDMS sample upon exposure to an oxidizing surface treatment. B)-D) Illustration of the possible fates for a surface oxidized PDMS sample, where the surface silanol groups are either B) dominated by hydrophobic recovery while exposed to atmosphere or C) hydrogen bonded with a polar solvent and suppresses hydrophobic recovery. D) This work proposes an alternative method of preserving the hydrophilic surface of PDMS through direct contact with a hydrogel, which also enables the preservation of the interfacial adhesion between hydrogel and PDMS.

However, PDMS also exhibits a hydrophobic recovery of its surface chemistry that is almost always dominated by the migration of residual siloxane oligomers towards the surface29–31,36–38. If exposed to the atmosphere, plasma-oxidized PDMS reverts back to a hydrophobic state in a matter of hours29,36,39,40 (Figure 1B). A similar instability of plasma-based surface treatments is observed in other materials, although the timescale of recovery is extremely material dependent33,41. Even though methods exist for mitigating hydrophobic recovery, such as thermal aging29, solvent extraction32, and chemical grafting28, these processes are generally incompatible with 3D extrusion. This
would suggest that, within the context of extrusion printing, the interfacial adhesion between hydrogel and plasma-treated polymer may degrade due to hydrophobic recovery.

On the other hand, the absence of delamination in fatigue tests in our previous work suggests that the PDMS/hydrogel interface may be stable15. Since suppression of hydrophobic recovery has been observed with PDMS in contact with an aqueous medium42,43(Figure 1C), we hypothesize that the water in the hydrogel suppresses hydrophobic recovery through formation of hydrogen bonds with the silanol groups in the PDMS surface (Figure 1D). A hydrophilic surface, by definition, physically binds with water in an energetically favorable manner and thus must contain polar functional groups with which water may interact. It is therefore reasonable that such a surface would also bind with other polar groups and improve the adhesion with another material.

For instance, silanol groups on a plasma-treated PDMS surface could form hydrogen bonds with polar groups in a hydrogel network enhancing the adhesion between both materials. The presence of water molecules and polar groups at the interface would
also reduce the driving force for the diffusion of hydrophobic species in the PDMS to the interface and impede hydrophobic recovery. We therefore posit that the hydrogen bonding interaction includes polar species such as water, as well as the acryloyl and amide functional groups present in both the hydrogel network and the rheological modifier. This mechanism establishes the possibility that hydrogels are capable of stabilizing the adhesion with plasma treated PDMS, with possible extensions to other polymers or elastomers. Therefore, the aim of this paper is to quantify the adhesion between plasma-treated PDMS and hydrogel over an extended period of time.

Interfacial adhesion has been characterized by a wide variety of methods44, including angled peeling45, lap shear46, scratch47, and flexure48,49 testing. The applicability of these methods to very soft materials capable of large deformations is, however, not well established. For instance, peeling tests have problems with hysteresis due to bending induced plasticity in the samples, while most other tests are either invalid beyond small-strain assumptions or are ill-suited for soft materials48. Even so, there exist several techniques that are suitable for evaluating the adhesion of hydogels, including bilayer shear-based tests50 and 90°-peeling tests3,4. We selected the 90°-peeling test (Figure
2A,B) because it is both compatible with the samples of interest and because it is a simple and standardized method for which adhesion energies are readily compared.

This study reports on the stability of the interfacial adhesion in materials systems that consist of printable hydrogels and PDMS. During this investigation, we were able to verify the long-term reliability of the adhesion, but also observed segregation of a viscous phase to the interface, which had a significant impact on the adhesive behavior. We demonstrate that this segregation is directly related to the surface treatment of the PDMS and the presence of the rheological modifier in the hydrogel precursor. This finding suggests that long-chain polymer additives, which were originally added to tailor the viscosity of the hydrogel precursor, also aid in the long-term reliability of the PDMS/hydrogel interface, and possibly of other materials systems.

Results and Discussion

Sample Preparation and Processing
The hydrogel precursor formulation as described by Tian et al.15 contains lithium chloride (LiCl) salt and uncrosslinked PAAm. The materials used in this study were chemically identical to those used by Tian et al.15, but the samples were cast instead of printed. To facilitate the casting process, the viscosity of the hydrogel precursor was decreased by reducing the amount of rheological modifier to 36.7% of the network polymer (see SI for exact weight percentages). This amount of modifier still yields a rheology that is suitable for extrusion printing (\textbf{Figure S1}), although with reduced resolution. The modification in the hydrogel formulation was driven by the need to fabricate macroscopic samples in a reasonable amount of time so that a statistically significant number of samples could be tested with peeling forces that were large enough to be measured accurately with available load cells. The interfacial adhesion of the cast samples and the underlying mechanisms are not expected to differ significantly from samples that were printed beyond potential effects of shear deformation during extrusion. This shear could cause some degree of polymer alignment, which, if we use the rubbing shear-alignment of polystyrene (PS) as a proxy, may slightly reduce
adhesion51. This alignment may also result in some anisotropy in the interfacial toughness, which is not considered in this study.

Samples were fabricated using a split mold that allowed removal of the samples from the mold without applying any forces perpendicular to the bilayer interface (Figure 2C&D). This procedure was used for all samples, even though it was strictly only necessary for samples with very weak adhesion. Once the hydrogel precursor and PDMS were cured in contact, samples were aged in a controlled environment with 42% relative humidity between 18 and 408 hours. The environmental control during aging was necessary to ensure that the swelling ratio of hydrogel would not change during aging. A 90°-peel test setup was then used to measure the adhesive energy of the hydrogel-PDMS bilayers, whereby the PDMS was peeled off from the hydrogel layer affixed to a glass substrate (Figure 2A). Data from the 90°-peel tests consisted of peeling force against peeling extension. All tests were initiated by making a pre-crack of less than 5 mm and were performed at a constant peeling rate of 50 mm/min for a length of at least 100 mm. After the crack began to propagate through the bilayer, the peeling force eventually settled into a steady-state regime. The expression for the strain...
energy release rate during peeling, is \(G = \frac{F}{b}(1 - \cos \theta) \) for peel angle \(\theta \), peel force \(F \), and sample width \(b \). For 90° peeling, this expression simplifies to \(G = \frac{F}{b} \). Under steady-state crack propagation, the interfacial fracture energy \(\Gamma \) is equal to \(G \), so that \(\Gamma \) is given by the plateau peeling force divided by the width of the specimen.
Figure 2. A) Illustration and B) Photograph of the experimental setup for adhesion measurements using a 90° peeling setup. C) A schematic overview of the segmented mold developed to preserve sample interface integrity. D) The sequence of sample fabrication, assuming a fully assembled mold stack.
Hydrophobic recovery and interfacial adhesion:

Figure 3. A) Contact angle measurements over a period of 400 hours of untreated PDMS and plasma-treated PDMS aged in contact with hydrogel (green diamond) or exposed to atmosphere (red square), with all lines to act as a guide to the eye; samples were all stored under RH control of 47%. Images illustrating B) hydrophobic (at 109.9°), C) weakly hydrophilic (at 54.8°) and D) hydrophilic (at 30.3°) regions of the behavior are shown.

The contact angles of water on various PDMS surfaces are shown in Figure 3A as a function of aging time. The contact angle on untreated PDMS was initially measured to be $\theta = 109.9^\circ \pm 2.8^\circ$ (Figure 3B), consistent with the extreme hydrophobicity of untreated PDMS, and remained unchanged during aging. A plasma-treated PDMS surface that was aged under atmospheric conditions only retained its hydrophilicity for a short period of time (Figure 3C) and reverted to a hydrophobic state within 10 hours.
The behavior of untreated and treated PDMS during aging matches that reported in the literature31,53,54 and is thus not particularly remarkable. On the other hand, plasma-treated PDMS surfaces aged in contact with a hydrogel were able to retain their hydrophilicity, $\theta \sim 30^\circ$, for a period of at least 408 hours, although the average values of the contact angle were slightly higher than the initial contact angle of treated PDMS, $\theta = 23.5^\circ \pm 6.9^\circ$. This result suggests that there is an interaction between the hydrogel and the silanol groups on the PDMS surface that suppresses hydrophobic recovery. The graph shows clearly that even a brief exposure to the atmosphere degrades the contact angle on treated PDMS. It is now necessary to relate these changes in contact angle to interfacial adhesion before any conclusion can be drawn.

Figure 4. A) An example of the hydrogel-elastomer bilayer interfacial peeling data used to calculate the plateau peeling force, presented as a plot of peeling force divided by sample width against peeling extension. B) A plot of the interfacial toughness of the plasma-treated PDMS and PAAm hydrogel.
interface observed over a 408 hour time period, with black line as a guide to the eye. Highlighted in blue, red, and green are data points at 18, 73 and 406 hours represented by the peeling data illustrated in A).

Figure 4 shows the results of the peel tests as a function of interface aging time. As illustrated in the figure, the measured adhesion energy changes significantly with aging: it increases from an initial value of $\Gamma=4.69\pm0.53$ J m$^{-2}$ to $\Gamma=14.63\pm0.75$ J m$^{-2}$ after 73 hours, i.e., a three-fold enhancement in adhesion. Although this behavior is not explained by any mechanism based on the hydrophobic recovery hypothesis, it is clear that the adhesion is stable at its plateau value of 15 J m$^{-2}$ for up to 408 hours after the initial aging period. If hydrophobic recovery had occurred during aging, the adhesion would have degraded due to the reduction in physical bonding between hydrogel and elastomer or a reversion of the contact angle of the PDMS surface back to a hydrophobic state. Since neither of these effects were observed, the surface treatment must be preserved, verifying the hypothesis that hydrophobic recovery of plasma-treated PDMS is inhibited by the presence of a hydrogel. This new form of hydrophobic recovery suppression may be useful for preserving the surface treatments of PDMS and polymers in general, both within the context of printed soft materials and beyond.
Viscous dissipation at the hydrogel-elastomer interface:

During adhesion testing, a viscous fingering instability developed at the interface between the hydrogel and the PDMS. In controlling for the rheological modifier (Figure 5A&B), it became apparent that this phenomenon is directly related to the presence of the rheological modifier in the hydrogel. A hydrogel without any rheological modifier was cast and aged for a period of 336 hours, but no fingering was observed (Figure 5A), while a hydrogel with modifier showed extensive fingering after approximately 73 hours (Figure 5B&C). With aging, a viscous layer develops at the hydrogel-PDMS interface leading to fingering during delamination. We believe that energy dissipation in this viscous layer contributes to the interfacial adhesion, consistent with models of the adhesive failure of visco-elastic solids, and is in fact the reason why the adhesion improves with aging. The only other time-dependent phenomenon expected in this context is hydrophobic recovery of the PDMS, which is readily ruled out since this mechanism would lead to a decline in adhesion. Visually, the phenomenon appears similar to the fingering instabilities first observed in the study of viscoelastic adhesion.
They have also been observed in elastic systems57, such as when peeling rigid plates from elastic adhesive films58 and the elastic instabilities present during the peeling of pressure sensitive adhesives59. That these instabilities remain after peeling suggests that the material responsible for the fingering is extremely viscous, which is indeed the case for the rheological modifier.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{A) A representative image of a peeling test after 336 hours of aging for a hydrogel containing no rheological modifier cured in contact with oxygen plasma-treated PDMS. B) & C) These representative images illustrate peeling tests of PDMS off hydrogels containing rheological modifier at aging time of 73 hours and 18 hours respectively. D) Plot of the adhesion recovery at different waiting times, 5 min and 24 hrs, of the plasma-treated PDMS-hydrogel interface for hydrogels both with and without the rheological modifier.}
\end{figure}
The viscous layer leaves a visible residue on the PDMS surface, as well as filaments on the hydrogel surface, indicating that the interfacial fracture propagates within the viscous layer rather than at the interface of hydrogel or PDMS. A consequence of this viscous residue is that it allows for completely reversible adhesion between the hydrogel and PDMS, as illustrated in Figure 5D. The figure shows a simple experiment in which a hydrogel-PDMS bilayer was first aged for at least 96 hours to ensure full development of the viscous layer, then delaminated and re-adhered without additional applied pressure (i.e. only gravity), and finally delaminated again after the specified amount of time. At each delamination step the adhesion energy was measured. The observation is that the adhesion in the final delamination recovers 107 ± 11 % of its previous value after 24 hours if the hydrogel has the rheological modifier, but only 57 ± 33 % without the modifier. We believe that the reduced adhesion in the latter case is due to partial hydrophobic recovery. When the plasma-treated PDMS surface is exposed to the atmosphere for approximately ten minutes after delamination, it undergoes hydrophobic recovery. This does not happen for the samples with the rheological modifier because the viscous residue that is left on the surface of the PDMS acts as a medium with which
silanol groups in the PDMS can form hydrogen bonds. The adhesion is then dominated by the dissipation that the viscous layer affords, i.e., the viscous layer acts as a pressure-sensitive adhesive binding the bilayer together.

Since the viscous layer significantly alters the behavior of the interface when loaded under mainly mode I conditions, we also evaluated the effect of the viscous layer when the interface is loaded mainly in shear. We thus conducted a mode II dominated delamination test to evaluate if the failure mode was different from previously observed hydrogel-elastomeric bilayer systems50 (Figure 6A). As Figure 6B illustrates, the crack front only propagates a small distance despite the stiff backing layer applied to the hydrogel to drive the bilayer towards delamination. Instead of steady-state crack propagation, the PDMS substrate fails and proceeds to slide across the hydrogel surface; this can be inferred from the lack of apparent flow or motion in the central region where the fractured PDMS and hydrogel remain in contact. There is a significant amount of viscous residue remaining on both hydrogel and PDMS, as observed in the 90° peel tests. The critical energy release rate, G, for this geometry can be determined using the method described by Tang et al.50 and is approximately $G = 29.88 \text{ J m}^{-2}$.
shortly prior to substrate failure (see Figure S2 for hydrogel viscoelastic moduli). We note that the crack front of the sample propagated a small amount, but then stopped even after the PDMS substrate failed and began sliding back (Figure 6B, SI Video 1). This behavior is due to the flowing of the viscous layer as the sample is deformed in shear (Figure 6C). Contrary to the mode I scenario where the two materials are separated perpendicularly, in mode II the materials are kept in contact with the viscous layer at all times.
Figure 6. Bilayer shear testing performed on an aged hydrogel-PDMS interface. Photos have been decolorized for clarity. A) shows the sample and a representative schematic of the un-stretched sample (schematic not to scale). Acrylic, hydrogel, and PDMS layers had thicknesses of 1.6mm, 0.5mm, and 1.6mm respectively, all had a width of 25mm. B) As the sample is stretched at a rate of 10mm/min, the PDMS portion is deformed while the thinner hydrogel layer, bonded to a stiff acrylic plate, is constrained. With increased strain the PDMS eventually fails and displays a slide/relaxation phenomenon that is readily explained by the presence of a viscous layer at the hydrogel-PDMS interface. C) An equivalent schematic representation of the previously described sample as it is stretched.

Several possibilities were considered regarding the origin of the viscous layer. For instance, the viscous layer could be the result of incomplete curing caused by the presence of oxygen in the PDMS given the high gas permeability of the material28,60.
However, the lack of viscous fingering in a hydrogel cured without rheological modifier suggests otherwise (Figure 5A). Separate combinations of hydrogel-PDMS curing tests showed that viscous fingering occurred only when both the PDMS was plasma-treated and the rheological modifier was present in the hydrogel. Both hydrogels with and without rheological modifier were found to have negligible adhesion and no viscous fingering after peeling from untreated PDMS. Furthermore, it was impossible to reproduce the effect even after 350 hours of aging if the rheologically modified hydrogel was cured separately and subsequently placed in contact with plasma-treated PDMS. These observations suggest that the hydrogel must be cured in contact with the treated PDMS surface to reproduce the segregation. Since the uncrosslinked PAAm used as rheological modifier has a high molecular weight and is quite viscous, this requirement may arise from the difficulty of the PAAm chains diffusing to the surface in the presence of a fully formed network. We further note that hydrogen bonding as a driving force acts equally on both the hydrogel network and the rheological modifier, given that they are chemically indistinguishable aside from the low-density crosslinks, but only the rheological modifier is mobile. Since hydrogen bonding is typically a short-range driving
force, we suggest that a fraction of the rheological modifier is able to migrate to the
PDMS interface pre-gelation, which partially anchors these chains to the interface via
hydrogen bonding. Once anchored, these polymer chains may continue their migration
to the interface post-gelation through a pull-out process.

The segregation phenomenon was further confirmed by means of fluorescence confocal
microscopy using fluorescently tagged un-crosslinked PAAm chains as rheological
modifier. Figure 7 makes it abundantly clear that the PAAm chains are in fact
aggregating as a macroscopic, ~30 \(\mu \text{m} \) thick layer at the interface between the hydrogel
and PDMS and that this layer is present as early as 18 hours after sample fabrication.

As the bilayer is aged beyond 18 hours, we observe that 1) the thickness of the layer
continues to increase from an initial 30 \(\mu \text{m} \) to 50 \(\mu \text{m} \), and that 2) visible levels of un-
crosslinked PAAm remain within the hydrogel network. This result strongly suggests
that this phenomenon is indeed a bulk-to-interface segregation of the rheological
modifier within the PAAm hydrogel. Although recent studies have described how bulk-
to-interface viscous flows can contribute to hydrogel adhesion61, there are no previous
reports of fluids in hydrogels undergoing macroscopic phase separation from bulk to
interface. Furthermore, the observation that no segregation occurs if the hydrogel is
cured separately from the treated PDMS suggests the need for an initial “seed layer” at
the interface that forms during the network curing stage and that allows continued
segregation after the hydrogel is fully cured. That this layer continues to grow in
thickness at a slow rate could be explained as a diffusion-driven process,62 whereby the
uncrosslinked polymer chains are drawn from the network to the interface; however it is
difficult to establish whether this is due to chain-anchoring or some other driving force in
the system. The adhesion enhancement that comes with the migration of the viscous
layer must arise from the entanglement that is inevitable for long polymer chains
contained within a cross-linked network. This entanglement allows viscous dissipation at
the interface, greatly enhancing the adhesion. The fact that significant amounts of
residue remain on the PDMS surface signifies that the hydrogen bonds between the
viscous layer and the PDMS are not readily severed, making the situation a viscoelastic
analog to the classical tethered polymer melt at the interface between two polymers63. The introduction of this rheological modifier changes the nature of the adhesion from
simple physical bonding into one where polymer chains are pulled out of their entangled state, albeit one where the chains are not chemically anchored to either surface63,64.

Figure 7. Fluorescence confocal imaging of the PDMS-hydrogel interface, having containing tagged the uncrosslinked PAAm chains with fluorescein-o-acrylate and aged for A) 18 hours or B) 384 hours. 3D reconstruction utilized scans centered on the interface ±100\textmu m and included both bright field and fluorescence channels for the perspective view; top and side views of the reconstruction used only the fluorescence channel.

Conclusions
Evaluation of the interfacial adhesion as well as contact angle measurements demonstrate that a hydrogel is capable of stabilizing PDMS surface oxidation treatments for extended periods of time while in direct contact. Furthermore, we have discovered that a macroscopic viscous layer segregates to the interface of a hydrogel-PDMS system if the hydrogel precursor contains a long-chain rheological modifier and the PDMS surface has been plasma treated with oxygen. This viscous layer enhances adhesion by increasing energy dissipation during delamination, a picture that is consistent with accepted models for interfacial failure in adhesives and earlier studies on adhesion enhancement through viscous dissipation. The presence of the viscous layer also results in fully reversible interfacial adhesion. This result highlights a simple method for improving the fabrication by printing of integrated systems of soft materials using preexisting techniques and materials that are readily available. Since the surface modification strategy employed here is applicable to polymers in general, the combination of rheological modifiers and plasma treatments may be an effective method for improving the adhesion for any printed heterogeneous material system consisting of a hydrogel and an elastomer.
Experimental Section

Preparation of PDMS: Sylgard 184 (Dow Corning) was mixed at the prescribed 10:1 ratio and cast into a 20mm x 200mm x 1.6mm acrylic mold, followed by degassing for 1 hour at 70 kPa vacuum. The degassed PDMS was then sealed by applying pressure with another acrylic plate and cured in an oven at 65°C for 24-hours. The PDMS is either used immediately following removal from the mold or undergoes further surface treatment. Prior to surface treatment the PDMS was rinsed with DI Water and isopropyl alcohol, and then dried with nitrogen. The PDMS is then treated with oxygen plasma (SPI Supplies, Plasma Prep II) at an O$_2$ Pressure of 18 psi, vacuum chamber pressure of 275 mTorr, and RF power of 80 W for 60 seconds. After treatment, the PDMS is immediately placed in DI water for transport and dried with N$_2$ prior to use.

Preparation of hydrogel: The PDMS segments are placed within a segmented acrylic mold to allow for hydrogel precursor to be cast directly onto the PDMS surface and cured while in direct contact; the mold may then be separated horizontally and removed such that the PDMS-Hydrogel interface is maintained (Figure 2A&B). The hydrogel
precursor consisted of acrylamide (AAm, Sigma-Aldrich, A8887), α-ketoglutaric acid (α-keto, Sigma-Aldrich), N,N,N',N'-tetramethylethylenediamine (TEMED, Sigma-Aldrich, T7024), N,N'-methylenebis(acrylamide) (MBAA, Sigma-Aldrich, 146072), and lithium chloride (LiCl, Sigma-Aldrich, 746460) dissolved in either DI water or a polyacrylamide (PAAm) solution. Mixing was performed using a planetary centrifugal mixer (Thinky, ThinkyMixer ARE-300). The PAAm solution was synthesized by UV exposing a solution containing AAm, α-keto, TEMED at a dose rate of 1.2 mW/cm² at 365 nm for 18 hrs at 25°C. The PAAm solution precursor used a mass ratio of 94.23% deionized water (resistivity = 18.2 MΩ cm), 5.60% AAm, 0.1203% α-keto, and 0.05311% TEMED. The hydrogel precursor final mass ratios were: 63.37% DI water, 3.623% PAAm, 9.88% AAm, 23.036% LiCl, 0.02635% MBAA, 0.0461% α-keto, and 0.0171% TEMED. In the cases where no rheological modifier was introduced, the precursor used the mass ratios: 66.12% DI Water, 9.54% AAm, 24.25% LiCl, 0.02774% MBAA, 0.0485% α-keto, and 0.0180% TEMED. All hydrogel precursors were exposed to a 15 W bench UV Lamp (XX-15, UVP), at a distance of 1 cm yielding an average dose rate of 30 mW/cm² at 365 nm for 45 minutes. Samples for the bilayer shear debonding test were made using
the same methods, but with the additional step of adhering the hydrogel to an acrylic sheet using a thin layer of cyanoacrylate adhesive (Krazy Glue).

Contact Angle Measurement: Measurements were made using a commercial contact angle measurement system (First Ten Angstroms, FTA135) to assist with image capture. Images were then manually processed to obtain the contact angle. Each measurement utilized a single 10 μL drop of DI Water on a previously untested sample surface and was performed after a delay of 20 seconds in order to allow wetting to stabilize. Untreated PDMS was used as a control and a treated PDMS surface was either exposed to atmosphere or made contact with a hydrogel using the segmented mold method described in the “Preparation of hydrogel” section. All samples were stored under a relative humidity of 47%. Due to residue from the hydrogel, PDMS samples kept in contact with a hydrogel were rinsed under DI water for 30 seconds and dried under N₂ for 30 seconds prior to contact angle measurements. At least five measurements were made for each condition, and all measurements for the same condition were made within a single five-minute interval.
Mechanical Characterizations: Peeling tests were performed on a dual column mechanical tester (Instron, 5966), with 10N load cell (Instron, 2530-428) and 90°-degree peel test fixture (Instron, 2820-035) at a constant displacement rate of 50 mm min⁻¹. The PDMS portion of the sample was peeled off the hydrogel, with the latter physically attached to a glass substrate during curing. Since the PDMS formulation used in this study is relatively stiff with a Young’s modulus of 1-3 MPa⁶⁸, a backing layer for the PDMS was not necessary to prevent excessive strains under load. All samples were fabricated to be 1.6 mm x 20 mm x 200 mm per material layer and stacked to form a 3.2 mm thick bilayer. A 2mm hole was punched into one end of the PDMS to allow for cotton twine to be fed through and thus extend the distance between sample and load cell to minimize the effect of misalignment. Samples were first aligned and then a small initial crack (2 mm) at the front of sample was made. Peeling was then performed for the remainder of the sample and the interfacial adhesion energy, Γ, was extracted from the steady-state region of the peeling force. Tensile testing of bulk hydrogel samples used the same mechanical test-frame with a 500 N load cell (Instron, 2530-500N). Samples for this condition were cast into acrylic molds with a dog-bone geometry.
(Figure S4). All samples were tested with a 1500 mm min\(^{-1}\) displacement rate, were deformed to 300\% stretch (150mm), and held for 5 min (Figure S5). Bilayer shear-debonding tests were completed on a mechanical testframe (Instron, 3342 Single Column UTS) with a 50N load cell (Instron, 2519-50N) at a displacement rate of 10 mm min\(^{-1}\).

Confocal Imaging: Fluorescence confocal imaging was used to track the distribution of the rheological modifier within the hydrogel-PDMS bilayer. Imaging was performed on a confocal microscope (Leica Microsystem, TCS SP5) with a 10X dry objective and an Argon laser excitation at 488nm. Image acquisitions of 258 \(\mu\)m x 258 \(\mu\)m were made along the \(z\)-axis in 1 \(\mu\)m steps. ImageJ software was used in the 3D reconstruction of the imaging data. The fluorescently-tagged un-crosslinked PAAm solution was prepared by making a separate instance of the PAAm solution precursor that substituted 10 wt\% of the AAm with 10 wt\% of Fluorescein o-acrylate (FOA, Sigma-Aldrich, 568856) and resulted in FOA copolymerized within the PAAm chains. This tagged-PAAm was mixed with untagged PAAm solution at a ratio of 1:9, and the resulting solution was integrated
with the hydrogel precursor as described previously in “Preparation of hydrogel”. All
other sample preparation steps were otherwise identical.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge via the
Internet at http://pubs.acs.org. It is accessible at DOI: 10.1021/acsami.XXXXXXX. The
following files are available free of charge:

Supporting Figures pertaining to rheological modifier data and sample geometry
contained in a PDF.

Supporting Video pertaining to bilayer shear experiment contained in a MPG.

AUTHOR INFORMATION

Corresponding Author

* Joost J. Vlassak e-mail: vlassak@seas.harvard.edu

* Zhigang Suo e-mail: suo@seas.harvard.edu
Author Contributions

† K.T. and J.B. contributed equally to this work. The study was jointly designed by K.T., J.B., Z.S. and J.J.V., and executed by K.T. and J.B. The manuscript was written through contributions of all authors. All authors have given approval of the final version of the manuscript.

Funding Sources

This research was supported by NSF (CMMI-1404653) and by the Harvard University MRSEC via NSF (DMR-1420570). Part of this work was performed at facilities supported by NSF (ECS 1541959).

Notes

The authors declare no competing financial interest.

ORCID

Joost J. Vlassak: 0000-0002-2166-6288

Zhigang Suo: 0000-0002-4068-4844

Jinhye Bae: 0000-0002-5336-2836

Kevin Tian: 0000-0003-4821-4959
ACKNOWLEDGMENT

The authors would also like to acknowledge Canhui Yang and Qihan Liu for fruitful discussions and intellectual contributions to this work. This research was supported with funding from the National Science Foundation under grant CMMI-1404653 and by the Harvard University MRSEC, which is funded by the National Science Foundation under grant DMR-1420570. Part of this work was performed at the Center for Nanoscale Systems (CNS), which is supported by the National Science Foundation under grant ECS 1541959.

ABBREVIATIONS

PDMS, polydimethylsiloxane; AAm, acrylamide; PAAm, polyacrylamide; PTFE, polytetrafluoroethylene; LiCl, Lithium Chloride; RH, relative humidity.

REFERENCES:

257–269.

(6) Hanson Shepherd, J. N.; Parker, S. T.; Shepherd, R. F.; Gillette, M. U.; Lewis, J.

(17) Herrera-Franco, P. J. J.; Drzal, L. T. T. Comparison of Methods for the

SPEC. ISS.), 1277–1279.

(42) Chen, I.-J.; Lindner, E. The Stability of Radio-Frequency Plasma-Treated

(54) Tan, S. H.; Nguyen, N. T.; Chua, Y. C.; Kang, T. G. Oxygen Plasma Treatment for
Reducing Hydrophobicity of a Sealed Polydimethylsiloxane Microchannel.

3480–3491.

(64) Zhang, B. Separation Strain Rate Dependence on the Failure of Polymer Adhesion with Mobile Promoters. *Int. J. Solids Struct.* **2013**, *50* (25–26), 4349–4354.

TOC Graphic: