Soft sensor for full dentition dynamic bite force

Sibo Chenga, Baohong Chenb, Yuan Zhoua, Minglong Xua, Zhigang Suob,\star

aState Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, PR China
bSchool of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA

corresponding author.

E-mail addresses: mlxu@mail.xjtu.edu.cn (M. Xu), suo@seas.harvard.edu (Z. Suo).

\begin{abstract}
The measurement of bite force is important to dental care and research. Current sensors of bite force are made of hard materials, which do not conform to the irregular surfaces of teeth and constrain the movements of muscles. Here we propose a soft sensor made of a hydrogel and a dielectric elastomer. The sensor converts a mechanical force to a change in capacitance. We characterize the force under step loads at various speeds and under cyclic loads at different frequencies. We further use biocompatible materials and make arrayed sensors. The soft sensor easily conforms to the surfaces of individual teeth and captures dynamic bite forces in different regions of dentition. This work illustrates the potential of using soft sensors to collect massive data over irregular and dynamic surfaces of hard materials.
\end{abstract}

\section{Introduction}

In vertebrates, bite force is a trait that impacts whole-organism fitness [1]. Teeth are used not only to capture, subdue, and process preys, but also to compete for mates [2,3]. In the study of the feeding habits of various species, bite force is widely used to characterize masticatory systems, mechanical demands of diets, and dietary ecology [4]. Bite force has been measured for many species of animals, e.g., sharks [5], lizards [6], finches [7], and bats [8]. For humans, the maximum bite force (typically 600–800 N) is one indicator of the health of the masticatory system [9]. The bite force results from the action of the jaw elevator muscles [10]. The bite force has been widely used in dentistry to understand the mechanics of mastication, evaluate the therapeutic effects of prosthetic devices, and provide reference for the biomechanics of prosthetic devices [11,12]. Bite force is also used to evaluate masticatory function in patients before and after orthognathic surgery [13].

The sensing elements in existing bite force sensors are made of hard materials [14–21]. Biting a hard sensor, however, is different from biting a piece of food, especially a piece of soft tissue. The hard sensor is too stiff to deform, and does not conform to the irregular shapes of teeth. In addition, hard sensors affect the activity of elevator muscles, which results in poor reliability in recording the maximum voluntary bite force [22]. An improvement has been made to cover a sensor of a hard material with layers of a soft material [22], but it is desirable to design a sensor using soft materials.

Here we propose a soft sensor to measure the bite force. The soft sensor conforms to the rough surfaces of teeth, and captures full dentition dynamic bite force. The sensor is made of hydrogels and dielectric elastomers, and converts a bite force to a change in electric capacitance. We design a measurement system with high resolution to capture electrical signals. We characterize the signals of sensor under quasi-static and dynamic compressive loads using a jaw model. We further design an arrayed sensor to collect simultaneously the bite forces from different regions of dentition. It is hoped that the soft sensor will be further developed for clinical studies and for scientific studies of humans and other animals.

\section{Experiments}

Soft electronics and ionotronics are under intense development for applications in engineering and medicine [23–31]. This development has renewed the interest in evaluating soft materials, such as elastomers and hydrogels, in various tests, including fracture [32–34], fatigue [35–37], and adhesion [38–40]. The mechanical, electrical, and chemical characteristics of the soft materials have opened new fields of applications [41–53]. In particular, the combination of hydrogels and dielectric elastomers has enabled artificial muscles [54,55], artificial axons [56,57], and artificial skins [58–61]. For our sensors, hydrogels function as ionic conductors, and elastomers function as electrical insulators.
2.1. Experimental setup

We design a bite force sensor as a deformable capacitor (Fig. 1a). We put the sensor between the human maxillary and mandible models. The soft sensor is mainly made of two materials: a dielectric elastomers and a hydrogel. In our initial experiments, we use the acrylic elastomer (VHB™ 3M) as a soft dielectric, and the calcium-alginate–polyacrylamide (PAAm) hydrogel [34,62] as a soft ionic conductor. Both materials are tough. For example, the hydrogel has a flaw-insensitive size about 10 cm [36,53], much larger than the size of human tooth. The synthesis of the hydrogel is described in supporting information. We use the elastomer VHB™ 4910 as the insulating layer between the ionic hydrogel conductors. The hydrogels are encapsulated in elastomeric layers to keep them from quickly drying out. The VHB elastomer is marketed as an adhesive tape, and comes with thin films of release layers of polyethylene (colored red) to avoid undesired adhesion. In the initial experiments, we leave the release layers on the top and bottom elastomers. Silver wires are used as interconnection between the ionic conductor and the measurement system. The whole structure is placed in the test machine (Zwick/Roell Z005) to deform under pressure. When the model jaws deform the soft sensor, the decrease of the thickness of insulating layer causes the capacitance of the sensor to increase. The change in capacitance is captured by the measurement system.

The initial capacitance of the sensor is estimated as \(C = \varepsilon S/d \), where the permittivity of VHB™ 4910 elastomer is \(\varepsilon = 4.2 \times 10^{-11} \text{ F/m} \), the thickness of the elastomer is \(d = 2 \times 10^{-3} \text{ m} \), and the area of the elastomer is \(S = 7.9 \times 10^{-4} \text{ m}^2 \), so that the capacitance is about 16.59 pF. The electric double layer (EDL) exists at the interfaces between the ionic conductor and metal electrodes, but negligibly affects the measured capacitance [24,58].

The measurement system consists of several parts (Fig. 1b). The Wheatstone bridge circuit improves the precision and reduces the interference from environments. The instrumentation amplifier enlarges the signals from the sensor. The high-pass Butterworth filter suppresses low-frequency noise. The functional waveform generator (DG4062, RIGOL) is used to output a test signal to bridge circuit, and a reference signal to lock-in amplifier (SR830, Stanford Research System). Both test and reference signals are sinusoidal of same frequency 1 kHz. The amplitude of the test signal is 2 V, and the reference signal of 4 V. The lock-in amplifier improves the signal-to-noise ratio (SNR) through signal difference calculation. Additionally, we use data acquisition system (QuantumX MX840B, HBM) for accessing high-frequency signals. Detailed circuit is in supporting information (Figure S3).

The photo of the sensor is shown in Fig. 2a. The model jaws are made of a hard material and simulate authentic dentition. A three-dimensional model of the sensor is shown in Fig. 2b. The upper and lower blue layers are hydrogels and extent parts in the front are used to connect with silver wires. Red translucent part in the diagram represents the elastomer layers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. Results and discussion

To relate the applied force and measured change in capacitance, we use a loading machine to homogeneously compress the sensor at different loading rates, and measure the changes in capacitance (Fig. 3a). We measure the capacitance of the sensor by using a LCR meter (HIOKI 3532-50 LCR HiTESTER). A sinusoidal signal is set at 1 V amplitude and 1000 Hz frequency. To characterize rate dependency of sensor, displacement rates...
of 20, 60, and 120 mm/min are prescribed for compression. The maximum compressive displacement is 3 cm according to the chewing amplitude of humans [63]. The measured capacitance and applied compressive force are linearly related at all loading rates. The behavior of the sensor is nearly rate-independent.

The sampling frequency of LCR meters is usually low (~1 Hz), limiting the measurement of capacitance in fast dynamic tests. However, our high-resolution bridge circuit (Fig. 1b) works at high sampling frequency (2.4 kHz), with output accuracy 0.01 millivolts, providing the potential to characterize the dynamic response of sensor at higher loading rates. The relationship between output voltage and applied force is also linear (Fig. 3b). To calibrate the sensor, we compare the capacitance by LCR meter and the voltage by bridge circuit. We linearly fit both curves, and obtain \(\Delta U/U_0 = 0.00173F \), \(\Delta C/C_0 = 0.00314F \). Accordingly, the relation between changes of voltage signal and capacitance is written as \(\Delta U/U_0 = 0.551\Delta C/C_0 \). Let \(C_0 = \varepsilon \cdot S/D \), suppose the thickness of insulator after compression is \(d = \lambda D \), where \(\lambda \) is less than 1. Due to the incompressibility, the changed electrode plates area is \(S/\lambda \). Thus, the change of capacitance after deformation is \(\Delta C = \varepsilon (S/D) \cdot (1/\lambda^2 - 1) \). For a measurement system with certain sensitivity, reducing the thickness of insulation layer can increase the change of capacitance and SNR.

To get the dynamic characteristics of the bite force sensor, we test the sensor under the step loading (Fig. 4). There is a 10 s interval between steps. The displacement of each step is 0.5 cm, and the total compression of the sensor is 3.5 cm. The variation of voltage and force are synchronized in tests. The voltages do not change at the interval stages. However, the force relaxes right after each step due to the viscoelasticity of VHB layers [64,65].

Typically, teeth chew the food cyclically. We apply a symmetric triangle displacement profile to mimic chewing. To minimize the viscoelasticity and avoid negative compressive force in unloading process, we pre-compress the sensor by 2.5 cm, and wait for the full relaxation until there is no negative force when unloading. Then the sensor is tested under cyclic compression with amplitude of 1 cm and frequencies of (a) 0.8 Hz, (b) 1.2 Hz, and (c) 1.5 Hz (Fig. 5). The cyclic frequencies are selected according to the mean chewing frequency of human jaw [63,66]. The presented data spans 10 s in tests. The output voltage shows an instant response to the change of force. The linear relation between the force and voltage still stands for dynamic loading.

2.3. Improvements of materials and array design

To improve the biocompatibility of soft sensor, we replace acrylic elastomer by polydimethylsiloxane (PDMS) and ionic conductor by polyvinyl alcohol (PVA) hydrogel (Fig. 6a). PVA hydrogel is prepared through repetitive freezing-thawing process [67–69].

Hydrogel with less PVA content shows lower modulus and larger stretchability (Figure S2). We use hydrogels consisting of 10 wt% PVA and physiological saline for sensors. The synthesis of PVA hydrogel and assembly of sensor are described in supporting information.
In addition, we reduce the thickness of hydrogel and insulating layer by half to increase the resolution of sensor. We test the full dentition sensor under quasi-static compression loading. Maximum displacement of the compression process is 2.5 cm. Force-voltage variation curve of full dentition bite force sensor is shown in linear relationship (Fig. 6b). The data can be linearly fitted as the $\Delta U/U_0 = 0.0011F$. We achieve the full dentition sensing with compression force around 50 kg, comparable to that of adults.

To measure the bite force in the different regions of dentition, we design an array of sensors for incisors, premolars, and molars (Fig. 6c). Gray layers are PDMS as insulating and encapsulating material. The blue layer represents a line of ionic conductor. Green, yellow and red blocks represent the array of ionic conductor located in molars, premolars and incisors regions. The area of each block accounts for 15% of the full dentition area. Afterwards, we test the sensor array under the full dentition compression (Fig. 6d). Relative variation of voltages is shown in different dentition regions under the maximum load of 518 N. The relative variation of voltage before and after loading in each region is labeled with corresponding force. According to the equation in Fig. 6b, the forces can be converted as $F_a = S_a \times \Delta U/U_0/0.0011$. Here S_a represents the areal ratio of sensor unit to full dentition bite region. Because each unit has same area, $S_a = 0.15$. Under full dentition test, molars bear more loads than premolars and incisors. This result is consistent with previous works [70,71]. Due to the less viscoelasticity of PDMS, stress relaxation during compression could be reduced and eventually the dynamic response of the biocompatible sensor could be better than that of original sensor.

3. Conclusion

In summary, we have demonstrated a soft bite force sensor using hydrogels and elastomers. The soft sensor readily conforms to the irregular surfaces of individual teeth, and captures bite forces from various regions of dentition simultaneously. It is hoped that the soft sensor will be further developed for applications in dental
care and research. It is also hoped that such soft sensors will be adapted to collect massive data for scientific studies of humans and other animals. This work illustrates the potential of using soft sensors to collect massive data over irregular and dynamic surfaces of hard materials. Other possible applications include machines and robots of hard materials.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11172229 and 11321062). B. Chen and Z. Suo acknowledges the support of NSF MRSEC, PR China (DMR 14-20570).

References

